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Summar 2 

This paper presents an investigation of the dependence of 
harmonic-like topological constraints in entangled and mo- 
derately crosslinked polymer networks on segment and cross- 
link density and on the deformation of the sample. The 
approach is an extension of a theory developed for the 
highly crosslinked case and for polymer melts. The results 
are used to discuss the influence of topological con- 
straints on the mechanical properties of different types 
of rubberelastic networks. 

Introduction 

The model of the harmonic constraining potential is one of 
the physically clearest and most successfull models for 
the simulation of topological constraints in entangled 
polymer systems. It was suggested by Edwards (I) in one of 
his first works on bulk polymers and is widely used in the 
physics of polymer melts and networks. 

The distribution function of a configuration E(s) of a 
continuous chain with the contour length L and the stati- 
stical segment length 1 is described by 

L 

p ( ~ ( s ) l t ( s ) )  = N exp(- 2~ f ( d~ (s ) / ds )2  ds - 

0 

T, 

- ~ wj 2 f(rj(s) - ~j(s)) 2 ds) 

J= 0 
x,y,z 

(1) 

N is the normalization factor and s the chain arc length. 
The chains are confined to the neighbourhood of the mean 
configuration, i.e. to the tube axis ~(s). The strength of 
the potential and therewith the mean square deviation of a 
segment from the tube axis, 
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d j  2 = < ( r j ( s )  - ~ j ( s ) )  2 ~ = 11/2 wj "1 , (2) 

is controlled by the parameters w~. A number of approaches, 
mostly phenomenologicsl, for the determination of the de- 
pendence of wj on segment-, chain- or crosslink density and 
on ~ne aexorma~ion of the sample exist (cf. e.g. Ref. 2). 
In two previous papers a statistical-mechanical approach to 
the calculation of the wj was developed. The simplest case, 
the constraints in a highly crosslinked network, was in- 
vestigated in Ref. 3. The opposite limiting case, the con- 
straints in a melt of lineary chains, was considered in 
Ref. 4. Following the ideas of these approaches, the more 
complicated problem of the constraining potential of a mo- 
derately crosslinked network is the aim of this paper. 

Theory 

The model is illustrated in Pig. I. We consider the in- 
crease 

AP(Yol~i(s),~i,0,~i,L ) 

of the free energy qf the i-th constraining chain with the 
mean configuration~i(s) and end-points at r_i.0 and rilL 
in dependence on the displacement Y9 of a segment of-t~e 
constrained chain from the mean posltion. The constraining 
potential is then given by the contributions of all con- 
straining chains: 

AP(Yo) = fff d3r-i, 0 d3ri, L D(~i(s))P+(_~i(s),ri,o,ri,L)' 

�9 AF(yol ~i(s) ,ri,o,ri,L ) (3) 

YfL/2)~Yo 
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/ \ 

�9 " f /  

\ 

r_t "* 

Fi~el 

Entanglement model. 

R(s) : actual configuration 
of the constrained 
chain, 

~(s) : mean configuration of 
the constrained chain, 

r(s) : actual configuration of 
a constraining chain. 
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+A 
p (Xi(s),~i,O,~i,L) is the probability density for the oc- 

curence of the corresponding entangled configuration of the 
chains. Moderately crosslinked networks are characterized 
by the fact that AF(Y o) is influenced both by the con- 
strsints caused by the network junctions and by the topo- 
logicsl constraints acting on the constraining chains. 
Consequently, the calculations are more complicated thmn in 
the limiting cases (3,4) but the ideas of these approaches 
are still applicable. 
(a) The distribution functions of the actual configurations 
of all chains are described by Eq. (1). 
(b) The distribution function of the mean configurations 
obeys the random walk behaviour 

L 

0 

(c) The restrictions imposed on the configurations of the 
constraining chains which are caused by the constrained 
chain under consideration are approximately taken into ac- 
count by restrictions imposed on the positions of one re- 
presentative segment at the mid-point L/2 of the con- 
straining chain, i.e. 

p+ .> p (r_.i,L/2,_ri,o,r_i,L) -- D(~Cs)) p(_~(s)) �9 

(#- Dirac's delta-fumction). 
(5) 

(d) The changes of the statistical weight AW and of the 
free energy z~P of the i-th constraining chain with end- 
-points at ri,o and ~-i,L and the mean configuration ~i(s) 
are then given by 

Yb 

~W(Yol-~i(s)'ri,o'ri,L ) = ~dY' I D(ri(s))P(ri(s)I~i(s))" 

Ya 

�9 p(~i(o)) or(_q(o) - r_i,o) #(_q(T.) . r_i,T.), 

, Or(yi(T./2) - y') Or(Xi'(T./2)) Or(Zi'(T./2)) (6) 
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with 

Ya = Yo } I Yb = oo > 0 
A 

for Yi(L/2) 
Ya = "~} 
Yb Yo ~ 0 

ri(s),~i,0,~i,L) = -kT In aW(YoI~i(s),~i,0,~i,L). 
Carrying out the integrations in Eq. (6) we obtain the ex- 
pression (7) for the contribution AF to the constraining 
potential. The constraining potential is assumed to be 
caused by a pair of molecules with mirror-symmetric con- 
figurations. 

A 
~F(Yol~i(s),~i,0,~i,L) = kT 4W ~'I/2 A 3/2 K(Yi(s),Yi,0,Yi,L)~ 

�9 exp( - AK 2) Yo 2 (7) 

with 

A = ~ coth G , G -= I IL 
do 2 ' 

K(~i(s),Yl,0,Yi, L) = K 1 + K 2 , 

K I = �89 (cosh G) "I (Yi,0 + Yi,L ) ' 
L/2 

K 2 ~ (cosh G) -I f A ^ = (Yi(U) + Yi(L-u)) sinh(RGu/L) du 
0 

(8) 

Using the fact that the largest contribution to the inte- 
gral in t~e express~on for K 2 comes from th~ vicinity of 
u = L/2, ~i(u) and ~i(L-u) are replaced by ~i(L/2). With 
p+ approximated by Eq. (5), the averaging over the con- 
figur@tions ~i(s) in Eq. (3) reduces then to an integration 
over ~i(L/2). The contribution of a pair of chains with 
fixed endpoints is then given by the following expression: 
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AF(Yolri,0,~i,L) ~ kT 4~-I/2 A3/2 Yi,0 + Yi,L 
- 2 B I/2, cosh G 

exp( - 2~1 ~(G) �9 (Yi ,o + Y i ,L  )2 ) ' 

[ I + ~ ~(G)(Yi,0 + Yi,L) ) ] .  

1 + } ~ ( Y i , o  + Yi,T,)) 

I+2 (cosh G- I)-~(G). 

[1 + ~ - 1 / 2 ( ~  (Yi ,o + Y i ,L  )" ~ (G)" 

(I + 

with 

G {cosh G - 1~2 
B(G) = 1 + ~ cosh G 

(9) 

~ ( G )  = ~ (1 - G coa.h G -  1 
~ "  co..~ G ) , ( 10 )  

G 2(G ) 
~(G) = I + c o s h  a .  s i ~  G " 

is the error function. As in References 3,4, the con- 
straining potential in the deformed state can be obtained 
by introducing the displacement of the endpoints of a net- 
work chain and of the tube axis according to a microscopic 
deformation tensor ~ mic " 

The limiting case of the unconstraint constraining chains 
(3) follows from Eq. (9) by setting G = 0. For large Flory- 
-numbers Np~1, the case of strong constraints G~I has to 
be investigated. Then, the functions ~(G) and ~ (G) can be 
replaced by their asymptotic values I and O, respectively. 
The ensemble averaging over the Junction positions can be 
performed analytically setting the ratio 

(1 + ~(  . .  ~ . . ) ) / ( 1  + ~( . . . ) )  

in Eq. (9) approximately constant. Adopting the method for 
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the consideration of the influence of the fast relaxation 
process on the constraining potential introduced in Ref. 4 
we obtain for the change of the free energy of the con- 
straining chains per segment of the constraint chain 
( G $ 1 )  

AP(Yo,(~E)mic) n s I -I 2 
' 1 = kT ( ( ~ y ) m i c )  G ( ( ~ y ) m i c ) . Y o  

L 

! I = ~ ~ yo 2 (11) 

n s is the number density of statistical segments. An ana- 
lytical self-consistent solution of Eq. (11) yields the 
generalized result 

dj = d o (~j~l/2,mic , j = x,y,z , 

do/l = K' (ns13)-I/2 (12) 

with the numerical prefactor K' of the order one. 

Discussion 

The theory presented above has to be viewed as a mean- 
-field approach to the problem of topological constraints 
in rubberelastic networks. This approach can be considered 
as most useful and best justified in the case of a large 
defree of coil interpenetration. In such systems strong 
topological constraints can be expected~ The theoretical 
results obtained here are valid in the limiting case of do- 
minating topological constraints in comparison to the con- 
straints caused by the crosslinks. In this case the defor- 
mation dependence of dj and the dependence on the chain 
length density are the same as in a melt (4). 
Equation (12) is the basis for a theoretical treatment of 
the stress-strain properties of rubberlike networks. This 
equation is most successful in the case of networks made 
by crosslinking of long primary chains (2). There, the 
chain defqrmat~o~ nearly follows the macroscopic defor- 
mation, ~mic- ~ �9 The discussion of the stress-strain 
properties of swollen networks (2) has suggested that with 
increasing swelling degree constraint release processes be- 
come important. These processes can be described by setting 
(2) 

mic = , b ~ 1 . 

It should be noted that networks prepared by endlinking of 
chains and treated in literature mostly within the concept 
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of trapped entanglements (5,6), can be described by Eq. 
(12), too. But now the constraints have to be considered 
as caused by a relatively small number of entanglements 
which are unable to relax. Consequently, the deformation 
dependence of d~ does not follow Eq. (12). A simple ent- 
anglement model~already proposed in Ref. 7, yielding 
d~j "~, reproduces the typical results of the concept 
oZ trapped entanglements for crosslink- and topological 
contributions to the stress-strain properties (2). 
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